Calculation of the Fisher information matrix for multidimensional data sets
نویسندگان
چکیده
Data sets that are acquired in many practical systems can be described as the output of a multidimensional linear separable-denominator system with Gaussian measurement noise. An important example is nuclear magnetic resonance (NMR) spectroscopy. In NMR spectroscopy, high-accuracy parameter estimation is of central importance. A classical result on the Cramér–Rao lower bound states that the inverse of the Fisher information matrix (FIM) provides a lower bound for the covariance of any unbiased estimator of the parameter vector. The calculation of the FIM is therefore of central importance for an assessment of the accuracy with which parameters can be estimated. It is shown how the FIM can be expressed using the matrices that determine the system that generates the data set. For uniformly sampled data, it is shown how the FIM can be expressed through the solutions of Lyapunov equations. The novel techniques are demonstrated with an example arising from NMR spectroscopy.
منابع مشابه
Identifying Useful Variables for Vehicle Braking Using the Adjoint Matrix Approach to the Mahalanobis-Taguchi System
The Mahalanobis Taguchi System (MTS) is a diagnosis and forecasting method for multivariate data. Mahalanobis distance (MD) is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. MTS is of interest because of its reported accuracy in forecasting small, correlated data sets. This is the type o...
متن کاملFast calculation of the Fisher matrix for Cosmic Microwave Background experiments
The Fisher information matrix of the cosmic microwave background (CMB) radiation power spectrum coefficients is a fundamental quantity that specifies the information content of a CMB experiment. In the most general case, its exact calculation scales with the third power of the number of data points N and is therefore computationally prohibitive for state-of-the-art surveys. Applicable to a very...
متن کاملCalculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملMonte Carlo Computation of the Fisher Information Matrix in Nonstandard Settings
The Fisher information matrix summarizes the amount of information in the data relative to the quantities of interest. There are many applications of the information matrix in modeling, systems analysis, and estimation, including confidence region calculation, input design, prediction bounds, and “noninformative” priors for Bayesian analysis. This article reviews some basic principles associate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 51 شماره
صفحات -
تاریخ انتشار 2003